Colégio Militar do Rio de Janeiro Concurso de Admissão à 5 série (6 ano) – 2005/2006 Prova de Matemática – 22 de Outubro de 2005

Prova Resolvida

http://estudareconquistar.wordpress.com/

Prova:

http://estudareconquistar.files.wordpress.com/2013/03/cmrj-prova-mat-605.pdf

Gabarito Oficial:

http://estudareconquistar.files.wordpress.com/2013/03/cmrj-gab-mat-605.pdf

CMRJ: http://www.cmrj.ensino.eb.br/Admissao/principal.html

Questão 1)

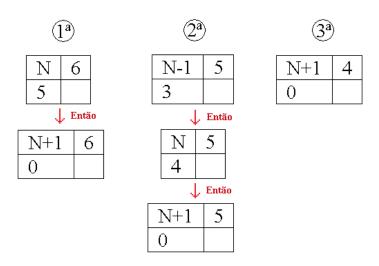
$$3 \times \left(\frac{2}{3}\right)^{3} \times 2,25 - \left\{ \left[\frac{3}{5} + \left(\frac{2}{3}\right)^{2} \div 0,111 \dots + \frac{5}{4} \right] \times \frac{4}{117} \right\}$$

$$3 \times \frac{8}{27} \times 2,25 - \left\{ \left[\frac{3}{5} + \frac{4}{9} \div \frac{1}{9} + \frac{5}{4} \right] \times \frac{4}{117} \right\}$$

$$\frac{18}{9} - \left\{ \left[\frac{3}{5} + \frac{\frac{4}{9}}{\frac{1}{9}} + \frac{5}{4} \right] \times \frac{4}{117} \right\}$$

$$2 - \left\{ \left[\frac{3}{5} + \frac{4}{1} + \frac{5}{4} \right] \times \frac{4}{117} \right\}$$

$$2 - \left\{ \frac{12 + 80 + 25}{20} \times \frac{4}{117} \right\}$$


$$2 - \left\{ \frac{117}{20} \times \frac{4}{117} \right\}$$

$$2 - \frac{1}{5} = \frac{9}{5}$$

Resposta: C

Questão 2)

Informações:

Conclui-se que N+1 é múltiplo de 4,5 e 6. O menor número natural que satisfaz essa condição é o m.m.c (4, 5, 6) m.m.c (4,5,6) = 60

Assim, $N+1 = 60 \rightarrow N = 59$

Soma dos valores absolutos dos algarismos = 5 + 9 = 14

Resposta: D

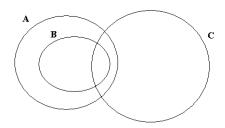
Questão 3)

Minuendo
Subtraendo
Resto

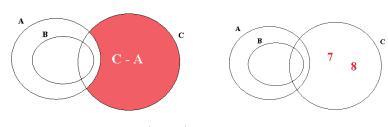
Minuendo - Subtraendo = Resto

M			
S			
518			

$$M - S = 518$$

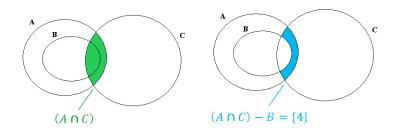

Informações:

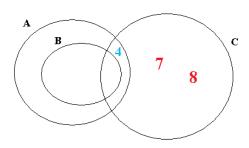
- Menor número primo maior que $200 \rightarrow 211$
- Maior número primo menor que $300 \rightarrow 293$


$$(M-211)-(S-293) = Novo Resto$$

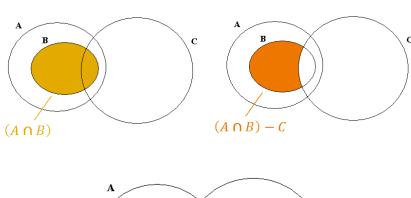
 $M-211-S+293 = Novo Resto$
 $M-S-211+293 = Novo Resto$
 $518+82 = Novo Resto \rightarrow Novo Resto = 600$

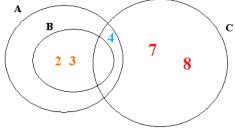
Resposta: D

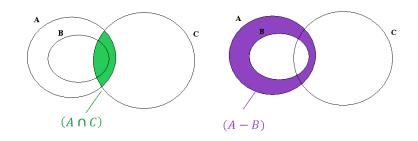

Questão 4)

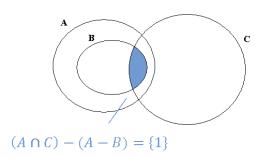


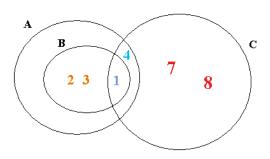
$$C - A = \{7,8\}$$

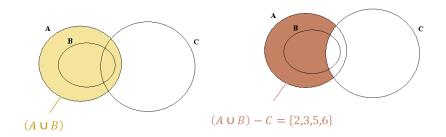


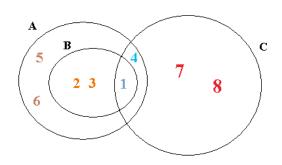

$$(A \cap C) - B = \{4\}$$




 $(A \cap B) - C = \{2,3\}$




$$(A \cap C) - (A - B) = \{1\}$$



 $(A \cup B) - C = \{2,3,5,6\}$

$$A = \{1,2,3,4,5,6\}$$
$$B = \{1,2,3\}$$

$$C = \{1,4,7,8\}$$

Questão 5)

Considere:

- A: Área Total

- R: Área Restante

Área Restante = (Área Total) – (Área dada aos irmãos)

Informações:

- A área restante tem 25 lotes

Irmãos	Parte da Herança	Parte da Herança
Alfredo	$\frac{1}{6}$ A + $\frac{2}{25}$ R	$\frac{1}{6} A + \frac{2}{25} x \frac{25}{48} A \to \frac{10 A}{48}$
Bernardo	$\frac{1}{8} A + \frac{3}{25} R$	$\frac{1}{8} x A + \frac{3}{25} x \frac{25}{48} A \to \frac{9 A}{48}$
Carlos	$\frac{1}{12}A + \frac{7}{25}R$	$\frac{1}{12}$ x A + $\frac{7}{25}$ x $\frac{25}{48}$ A $\rightarrow \frac{11}{48}$
Davi	$\frac{1}{16} A + \frac{5}{25} R$	$\frac{1}{16} \times A + \frac{5}{25} \times \frac{25}{48} A \to \frac{8 A}{48}$
Ernesto	$\frac{1}{24}xA + \frac{8}{25}R$	$\frac{1}{24} \times A + \frac{8}{25} \times \frac{25}{48} A \to \frac{10 \text{ A}}{48}$

$$R = A - \left(\frac{1}{6} A + \frac{1}{8} A + \frac{1}{12} A + \frac{1}{16} A + \frac{1}{24} A\right)$$

$$R = A - \left(\frac{8}{48} A + \frac{6}{48} A + \frac{4}{48} A + \frac{3}{48} A + \frac{2}{48} xA\right)$$

$$R = A - \frac{8+6+4+3+2}{48} A$$

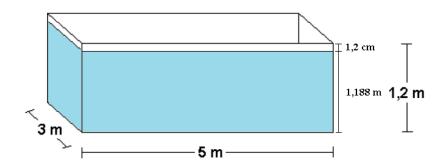
$$R = A - \frac{23}{48}A \rightarrow R = \frac{25}{48}A$$

Resposta: D

Questão 6)

Logodor		Resul	tados obtic	dos	
Jogador	1º lance	2º lance	3° lance	4º lance	Total
Marcel	6	6	6	6	24
Thiago	3	5	3	2	13
Talita	5	6	4	3	18
Alan	6	3	2	2	13

Marcel - 24 (vai até a chegada e volta 3 casas) $\rightarrow 18$


Thiago
$$\rightarrow$$
 13

Talita
$$\rightarrow$$
 18

Alan
$$\rightarrow$$
 13

Resposta: A

Questão 7)

Informações:

Balde =
$$10 \text{ litros } \rightarrow 10 \text{ dm}^3 \rightarrow 0.01 \text{ m}^3$$

Volume do reservatório = $3 \times 5 \times 1,2 = 18 \text{ m}^3$

Volume de água utilizado na lavagem do carro $= 3 \times 5 \times 0.012 = 0.18 \text{ m}^3$

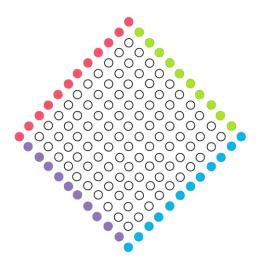
1 Balde
$$\rightarrow$$
 0,01 m³

X Baldes
$$\rightarrow$$
 0,18 m³

$$X = 18$$
 baldes

Resposta: A

Questão 8)


Informações:

- 2,2 milhões de multas
- 35% das multas são as infrações principais
- 75% das infrações principais são praticadas por homens
- Multa de R\$ 125,00

Infrações Principais =
$$\frac{35}{100}$$
x 2200000 = 770000
Praticadas por Homens = $\frac{75}{100}$ x 770000 = 577500
Arrecadação das multas = 577500 x 125 = R\$ 72.187.500

Resposta: C

Questão 9)

- Moedas de 5 centavos → Perímetro do quadrado

Moedas de
$$0.05 = 12 + 12 + 10 + 10 = 44$$

- Moedas de 1 centavo → Àrea do quadrado - Moedas de 5 centavos

$$\text{Moedas de 0,01} = 12 \left(\frac{\text{moedas}}{\text{lados}} \right) \times 12 \left(\frac{\text{moedas}}{\text{lados}} \right) - 44 \left(\text{moedas de 0,05} \right) = 144 - 44 = 100 \text{ moedas de 1 centavo}$$

Valor total =
$$44 \times 0.05 + 100 \times 0.01 = 2.2 + 1 = R$3,20$$

Resposta: B

Questão 10)

 $10^{2} = 100$ $11^{2} = 121$ $12^{2} = 144$ $13^{2} = 169$ $14^{2} = 196$ $15^{2} = 225$ $16^{2} = 256$ $17^{2} = 289$

Soma =
$$11 + 12 + 13 + 14 + 15 + 16 = 81$$

 $81 = 9^2 \rightarrow N = 9$

Resposta: A

Questão 11)

Cada equipe deve ter o mesmo e o maior número de alunos possíveis. Assim, devemos achar o maior número com que seja possível formar equipes com os alunos presentes nas quatro turmas. Esse valor corresponde ao m.d.c. (35, 42, 49, 56).

35, 42, 49, 56	2 → Divide 42 e 56
35, 21, 49, 28	2 → Divide 28
35, 21, 49, 14	$2 \rightarrow \text{Divide } 14$
35, 21, 49, 7	$3 \rightarrow \text{Divide } 21$
35, 7, 49, 7	$5 \rightarrow \text{Divide } 35$
7, 7, 49, 7	$7 \rightarrow \text{Divide } 35, 7, 49 \text{ e } 7$
1, 1, 7, 1	$7 \rightarrow \text{Divide } 7$
1, 1, 1, 1	

m.d.c (35, 42, 49, 56) = 7

Serão formadas equipes com 7 alunos cada:

- Turma A, com 35 alunos:
- → 5 equipes com 7 alunos cada
- Turma B, com 42 alunos:
- → 6 equipes com 7 alunos cada
- Turma C, com 49 alunos:
- → 7 equipes com 7 alunos cada
- Turma D, com 56 alunos:
- → 8 equipes com 7 alunos cada

Após a primeira fase:

Turma	Equipes	Eliminadas	Passaram para 2ª Fase
A	5	1	4
В	6	2	4
С	7	2	5
D	8	3	5

I) Correta

Total de Alunos =
$$35 + 42 + 49 + 56 = 182$$

Total de Alunos Eliminados =
$$1x7 (A) + 2x7 (B) + 2x7 (C) + 3x7 (D) = 8x7 = 56$$

% de alunos eliminados =
$$\frac{\text{total de alunos eliminados}}{\text{total dos alunos da } 5^{\underline{a}} \text{ série}} = \frac{56}{182} = \frac{28}{91} = 30,7\%$$

II) Correta

Total de Alunos Eliminados =
$$1x7 (A) + 2x7 (B) + 2x7 (C) + 3x7 (D) = 8x7 = 56$$

Alunos que passaram = Total de Alunos — Alunos Eliminados

Alunos que passaram =
$$182 - 56 = 126$$

$$\frac{\text{Alunos Eliminados}}{\text{Alunos que Passaram}} = \frac{56}{126} = \frac{28}{63}$$

III) Falsa

Equipes da
$$2^{\underline{a}}$$
 fase = $4 + 4 + 5 + 5 = 18$

Resposta: E

Questão 12)

Informações:

$$m.d.c. (x, y) = 6$$

m.m.c.
$$(x, y) = 120$$

 \rightarrow Fatores primos comuns \rightarrow m.d.c. = 2 x 3 = 6

$$X = 3 \times 2$$

$$Y = 3 \times 2$$

 \rightarrow Fatores primos comuns e não comuns \rightarrow m.m.c. = 2^3 x 3 x 5 = 120. Possibilidades:

$$X = 3 \times 2 = 6 \rightarrow X$$
 não pode ser igual a 6

$$Y = 3 \times 2 \times 2^2 \times 5 = 120$$

$$X = 3 \times 2 \times 2^2 \times 5 = 120$$

 $Y = 3 \times 2 = 6 \rightarrow Y$ não pode ser igual a 6

$$X = 3 \times 2 \times 5 = 30$$

$$Y = 3 \times 2 \times 2^2 = 24$$

Ou

$$X = 3 \times 2 \times 2^2 = 24$$

$$Y = 3 \times 2 \times 5 = 30$$

I) Falsa.

Ambos possuem 6 como fator comum, logo são divisíveis por 2, 3 e 6 e não podem ser primos.

II) Falsa.

O produto dos números x e y contem os fatores comuns e não comuns, ou seja, contem o m.m.c. Portanto, é divisível por ele.

III) Verdadeira.

Soma dos algarismos =
$$3 + 0 + 2 + 4 = 9$$

IV) Falsa.

Se o fator 5 fosse divisor de ambos os números, ele estaria no m.d.c. entre eles.

V) Falsa.

- Menor número é 24
- É maior que 5 e menor que 25
- Não é múltiplo de 9.

Resposta: C

Questão 13)

I) Falso. O valor final possui 7 dígitos e a mensagem ERRO apareceria no visor.

$$Soma = 152000 + 200000 + 110000 + 45000 + 320000 + 173000 + 50000 = 1050000$$

II) Verdadeira

Soma (Até ordem 5) =
$$152000 + 200000 + 110000 + 45000 + 320000 = 827000$$

Soma (Até ordem 6) = $827000 + 173000 = 1000000$

III) Verdadeira

Soma =
$$152 + 200 + 110 + 45 + 320 + 173 + 50 = 1050$$
 (4 dígitos)
 $1050000 \rightarrow \text{valor final da soma sem mensagem de ERRO}$

Resposta: D

Questão 14)

Informações:

- Número maior: X
- Número menor: Y
- m.d.c. (x, y) = 3
- m.m.c. (x, y) = 4x = 5y

O m.m.c. é um múltiplo de 3, 4, 5 ao mesmo tempo. O menor número que obedece a essa condição é o m.m.c. (3,4,5).

m.m.c.
$$(3,4,5) = 60$$

$$4x = 5y = 60$$

$$X = 15$$
 $Y = 12$

Soma =
$$15 + 12 = 27$$

Resposta: E

Questão 15)

Área inicial =
$$10 \times 15 = 150 \text{ cm}^2$$

Área ampliada =
$$13 \times 18 = 234 \text{ cm}^2$$

50% maior que a área inicial = Área Inicial +
$$\frac{50}{100}$$
 (Área Inicial) = 150 + 75 = 225 cm²

Aumento Real =
$$\frac{234}{150} = \frac{156}{100} \rightarrow \frac{100}{100} + \frac{56}{100} \rightarrow \text{aumento de } 56\%$$

Resposta: A

Questão 16)

N = Três algarismos distintos

I) Verdadeiro

Menor número par de três algarismos distintos: 102

102	6
0	17

II) Verdadeiro

Maior número de três algarismos divisível por 4: 984

984	3
0	328

III) Verdadeiro

Maior número de três algarismos divisível por 11: 968 (número par)

- Como achar esse número:

999	11
9	90

O maior número de três algarismos que é múltiplo de 11 é: 11 x 90 = 990 → tem algarismos iguais

O segundo maior : $990 - 11 = 979 \rightarrow \text{Algarismos iguais!}$

O terceiro maior: 979 - 11 = 968

Resposta: E

Questão 17)

$$\begin{aligned} \text{Distancia} &= \frac{\text{Distancia}}{\text{Tempo}} \left(\frac{\text{km}}{\text{h}}\right) \text{x Tempo (h)} \\ &= 1 \text{ h} = 3600 \text{ segundos} \\ &= 4 \text{ segundos} \\ &= \frac{1}{900} \text{horas} \\ \\ \text{Distancia} &= 90 \left(\frac{\text{km}}{\text{h}}\right) \text{x } \frac{1}{900} \text{ (h)} = \frac{1}{10} = 0,1 \text{ km} = 100 \text{ m} \end{aligned}$$

Resposta: B

Questão 18)

$$MCDXLVI = 1000 + 500 - 100 + 50 - 10 + 5 + 1 = 1446$$

Numeral						
Milhar Simples				Simples		
Centena	Dezena	Unidade	Centena	Dezena	Unidade	
		1	4	4	6	

1^a)

- Algarismos das centenas: 4
- Algarismo da unidade simples: 6

Numeral						
Milhar				Simples		
Centena	Dezena	Unidade	Centena	Dezena	Unidade	
		1	6	4	4	

2^a)

- Algarismo da unidade de milhar: 1
- Algarismo da dezena: 4

Numeral						
	Milhar			Simples		
Centena	Dezena	Unidade	Centena	Dezena	Unidade	
		4	6	1	4	

I - Falsa

$$MDCXLIV = 1000 + 500 + 100 + 50 - 10 + 5 - 1 = 1644$$

II - Verdadeira

Numero após mudanças — Numero original = 4614 - 1446 = 3168

$$MMMCLXVIII \rightarrow 1000 + 1000 + 1000 + 100 + 50 + 10 + 5 + 1 + 1 + 1 = 3168$$

III - Verdadeira

- Algarismo das centenas = 6
- Valor relativo = 600

$$DC = 500 + 100 = 600$$

Resposta: C

Questão 19)

Informações:

- Preço de setembro = X

Novos Preços =
$$X + \frac{40}{100}X = \frac{140}{100}X$$

Preço de Outubro (com desconto) = Novos Preços $-\frac{30}{100}$ (Novos Preços)
Preço de Outubro (com desconto) = $\frac{140}{100}X - \frac{30}{100}\frac{140}{100}X = \frac{98}{100}X$
Preço de Outubro = $\frac{98}{100}X = \frac{100}{100}X - \frac{2}{100}X \rightarrow 2\%$ mais barato

Resposta: A

Questão 20)

A) FALSA

Área da chapa de aço =
$$1 \times 1 = 1 \text{ m}^2$$

Área do pedaço quadrado = $30 \times 30 = 900 \text{ cm}^2 = 0,09 \text{ m}^2$
Área da sobra = Área total – Área dos quadrados
Área da sobra = $1 - 9 \times 0,09 = 0,19 \text{ m}^2$

B) VERDADEIRA

Custo das sobras =
$$0.02 \times 1900 = R\$ 38.00$$

C) FALSO

A cada chapa recortada
$$\rightarrow$$
 Perde $-$ se 0,19 m²

Em 5 chapas recortadas \rightarrow X

$$X = 0.95 \text{ m}^2 = \frac{95}{100} \text{ m}^2$$

$$\frac{17}{20} \text{ da chapa original que mede } 1\text{m}^2 = \frac{17}{20} \text{m}^2 = \frac{85}{100} \text{ m}^2$$

D) FALSO

Custo da chapa original = $0.02 \times 10000 = R\$ 200.00$ \rightarrow Lembre que o custo é calculado com cm²

E) FALSO

Ganho com os quadrados =
$$0.02 \times 900 = R$18,00$$

Resposta: B