
PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

<u>1ª QUESTÃO</u>. (VALOR: 20 ESCORES) - ESCORES OBTIDOS _____

MÚLTIPLA ESCOLHA

ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM "X" NOS PARÊNTESES ABAIXO.

 $\underline{\textbf{Item 01}}. \text{ A representação gráfica de } \big[M-(M-N)\big] \bigcap P \hspace{3mm} \acute{\text{e}}$

<u>Item 02</u>. Decompondo em fatores a expressão $(3a+2b+c)^2-(a+2b+3c)^2$, obtém-se

a. ()
$$8(a+b+c)(a-c)$$

b. ()
$$8(a-b+c)(a-c)$$

c. ()
$$6(a+b+c)(a-c)$$

d. ()
$$6(a-b+c)(a-c)$$

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

- <u>Item 03</u>. O preço inicial de um vídeo-game sofreu dois aumentos consecutivos de 25% e de 40%, motivados pela inflação. Em porcentagem, o aumento total sofrido pelo preço desse vídeo-game foi
 - a. () 55%
 - b. () 80%
 - c. () 90%
 - d. () 75%
- <u>Item 04</u>. Calculando a média aritmética (Ma), a média geométrica (Mg) e a média harmônica (Mh) entre os números 9 e 16, encontramos
 - a. () Ma < Mg < Mh
 - b. () Mg < Ma < Mh
 - c. () Mh < Mg < Ma
 - d. () Mh < Ma < Mg
- <u>Item 05</u>. 18 operários fazem 3/4 de um trabalho em 10 dias trabalhando 8 horas por dia. Quantas horas por dia serão necessárias para terminar este serviço em 8 dias, se forem dispensados 8 operários?
 - a. () 5
 - b. () 7
 - c. () 8
 - d. () 6
- <u>Item 06</u>. Numa garagem existem bicicletas e automóveis num total de 50 veículos e 140 rodas. O número de automóveis é
 - a. () 20
 - b. () 30
 - c. () 40
 - d. () 10

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

<u>Item 07</u>. O valor da expressão $\frac{6}{\sqrt{8+\sqrt{2}}}$ é igual a

a. ()
$$\sqrt{6}$$

b. ()
$$\frac{6}{\sqrt{10}}$$

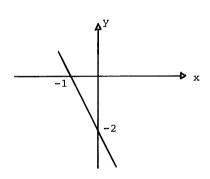
c. ()
$$\sqrt{2}$$

d. ()
$$\frac{3\sqrt{6}}{5}$$

<u>Item 08</u>. O intervalo que contém a solução da equação $\sqrt{x+3} + \sqrt{2x+4} = 1$ é

a. ()
$$3 \le x < 6$$

b. ()
$$-1 \le x < 3$$


Item 09. Qual das funções abaixo corresponde ao gráfico dado

a. ()
$$y = 2x + 2$$

b. ()
$$y = -2x - 2$$

c. ()
$$y = -x - 2$$

d. ()
$$y = -x + 2$$

<u>Item 10</u>. Para que a função do 1º grau dada por f(x) = (2 - 3k) x + 2 seja crescente devemos ter

a. ()
$$k = \frac{2}{3}$$

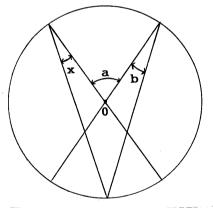
b. ()
$$k > \frac{2}{3}$$

c. ()
$$k < \frac{2}{3}$$

d. ()
$$k < -\frac{2}{3}$$

PROVA DE CIÊNCIAS EXATAS DA 1º SÉRIE DO ENSINO MÉDIO

<u>Item 11</u> . Ao ponto de encontro das bis	etrizes internas de 1 triângulo, denominamos de
---	---


- a. () ortocentro
- b. () incentro
- c. () baricentro
- d. () circuncentro

Item 12. O polígono cujo nº de diagonais é igual ao triplo do nº de lados chama-se

- a. () pentágono
- b. () hexágono
- c. () octógono
- d. () eneágono

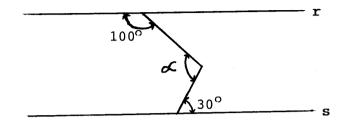
<u>Item 13</u>. Sabendo que o ângulo central **â** mede 56° e o ângulo **b** mede 18°. O valor do ângulo **x** na figura abaixo mede

- a. () 10°
- b. () 19°
- c. () 20°
- d. () 38°

<u>Item 14</u>. Um dos ângulos agudos de um triângulo retângulo mede 30°. Se a altura relativa a hipotenusa mede $4\sqrt{3}cm$, o comprimento da hipotenusa medirá

- a. () 16 cm
- b. () 8 cm
- c. () 64 cm
- d. () 48 cm

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

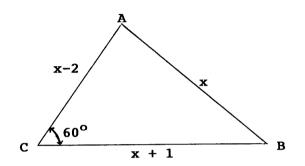

<u>Item 15</u>. Na figura abaixo, temos r//s. O ângulo α tem por medida

a. () 90°

b. () 110°

c. () 105°

d. () 120°


Item 16. O perímetro do triângulo abaixo mede

a. () 12

b. () 15

c. () 20

d. () 25

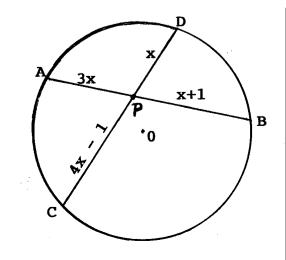
<u>Item 17</u>. Os lados de um triângulo medem 8 cm, 10 cm e 12 cm. Para que o menos lado encontre a bissetriz do ângulo externo oposto a ele, devemos prolongá-lo com um segmento de

a. () 20 cm

b. () 40 cm

c. () 32 cm

d. () 18 cm


Item 18. Na figura abaixo, o valor da corda \overline{AB} é igual a

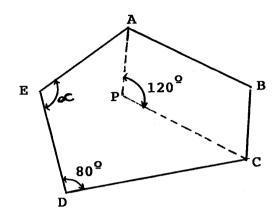
a. () 4

b. () 12

c. () 15

d. () 17

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

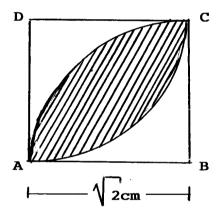

<u>Item 19</u>. Sendo \overline{AP} e \overline{CP} bissetrizes de \hat{A} e C, \overline{AB} // \overline{PC} , \overline{AP} // \overline{BC} , o valor de α será igual a

a. () 110°

b. () 95°

c. () 100°

d. () 120°

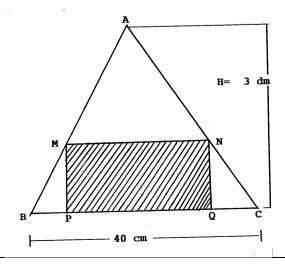

<u>Item 20</u>. Na figura abaixo, o quadrado **ABCD** têm lado medindo $\sqrt{2}$ cm. A área tracejada mede

a. () $\left(\pi - \sqrt{2}\right)$ cm²

b. () $(\pi - 2)$ cm²

c. () $(3\pi/2)$ cm²

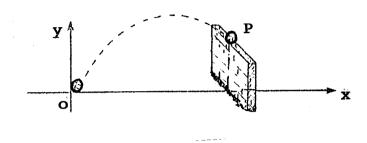
d. () 2 $(\pi - 3)$ cm²



2ª QUESTÃO. (VALOR: 10 ESCORES) - ESCORES OBTIDOS

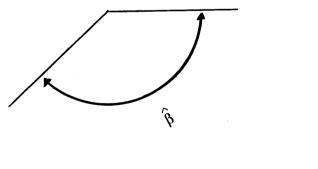
DÊ O QUE SE PEDE

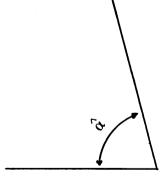
EFETUE TODOS OS CÁLCULOS NECESSÁRIOS Á SOLUÇÃO DAS QUESTÕES ABAIXO.


<u>Item 21</u>. Um retângulo está inscrito em um triângulo conforme figura abaixo. Sabendo que a base do retângulo é igual ao dobro de sua altura, calcule a área desse retângulo. (05 escores)

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

<u>Item 22</u>. Um menino está à distância de 6m de um muro de altura 3m e chuta uma bola que vai bater exatamente sobre o muro da figura abaixo. Sendo a função da trajetória da bola definida por $y = ax^2 + (1-4a)x$, pede-se: (05 escores)



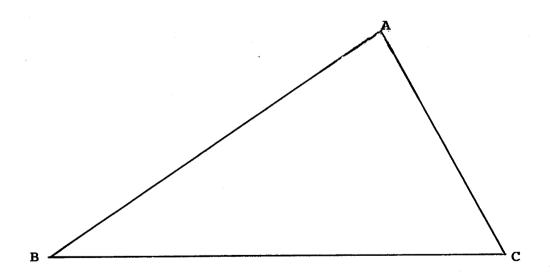

- a) as coordenadas do ponto "P" (Pt de impacto da bola sobre o muro)
- b) o valor de "a"
- c) a altura máxima atingida pela bola

<u>3ª QUESTÃO</u>. (VALOR: 10 ESCORES) - ESCORES OBTIDOS _____

DESENHO GEOMÉTRICO PLANO

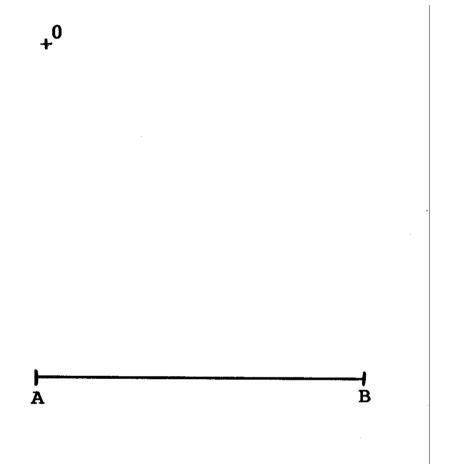
Item 23. Dados os ângulos α e β pede-se: (02 escores)

- a) efetue graficamente a operação $\mu = \alpha + \beta$
- b) a medida do ângulo μ em graus é ______.

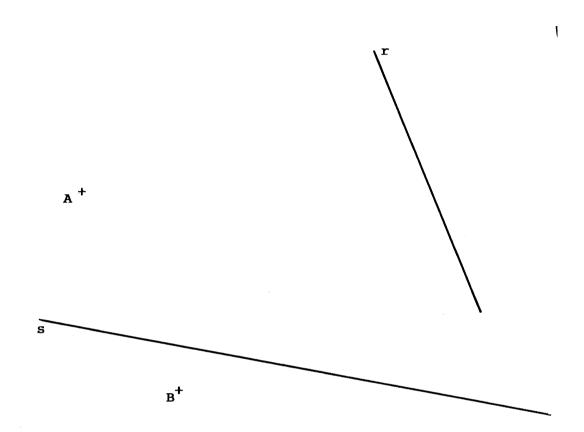


PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

<u>Item 24</u>. Traçar, pelo ponto **P**, a reta perpendicular a reta "s" dada. (01 escore)


<u>Item 25</u>. Construir o triângulo **A'B'C'** semelhante ao triângulo **ABC** sabendo-se que a razão de semelhança é de 3/5. (02 escores)

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO


<u>Item 26</u>. Determinar o ponto C distante 3 cm do ponto O, de tal modo que o ângulo ACB = 65° e que o segmento AC seja o menor possível (02 escores)

PROVA DE CIÊNCIAS EXATAS DA 1ª SÉRIE DO ENSINO MÉDIO

<u>Item 27</u>. Determinar o ponto **M** equidistante dos pontos **A** e **B** e também equidistantes das retas "**r**" e "**s**". (02 escores)

	PROVA	DE CIENCIA	AS EXATAS I	DA 1 SERIE	DO ENSINO I	MEDIO
<u>Item 28</u> .	Determinar a m	nédia geométrica	entre os segmento	os " m " e " n " . (01	escore)	
	ı		ı		ı	
	m			n		