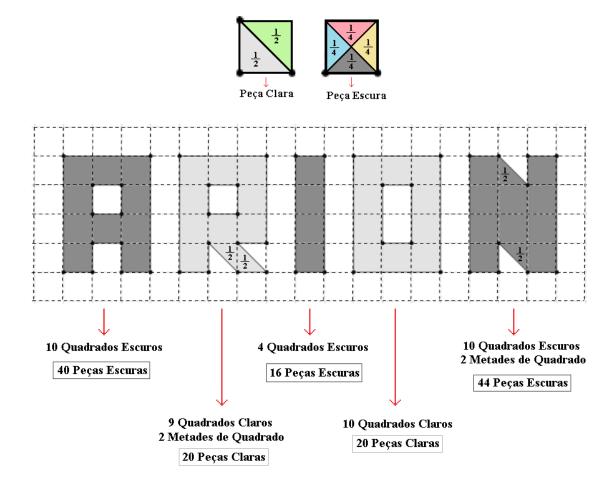
Colégio Militar do Rio de Janeiro Concurso de Admissão ao 6º Ano – 2011/2012 Prova de Matemática – 16 de Outubro de 2011

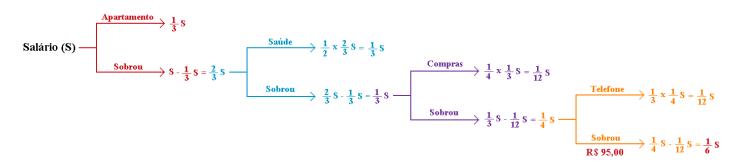

Prova Resolvida

http://estudareconquistar.wordpress.com/

Prova e Gabarito: http://estudareconquistar.wordpress.com/downloads/

CMRJ: http://www.cmrj.ensino.eb.br/Admissao/principal.html

Questão 1)

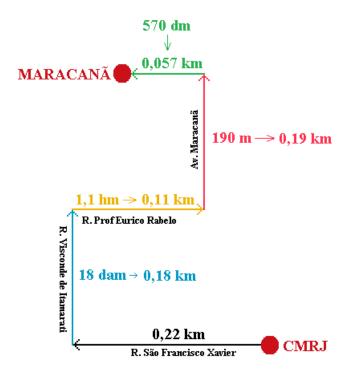


Peças **Escuras**: 40 + 16 + 44 = 100

Peças Claras: 20 + 20 = 40

Resposta: A

Questão 2)


→ Após o pagamento das contas:

$$\frac{1}{6} S = 95$$

$$S = R$ 570,00$$

Resposta: D

Questão 3)

Distância	km	hm	dam	m	dm
0,22 km	0	2	2		
18 dam		1	8		
1,1 hm		1	1		
190 m		1	9	0	
570 dm			5	7	0
Total	0	7	5	7	0

Total = 0,757 km

Resposta: C

Questão 4)

Informações:

- 2,8 toneladas de feijão 1 hectare
- 1 hectare = 1 hm^2
- 1 caminhão = 14.000 kg
- Produção de feijão = 16 km²
- → Convertendo unidades:

2,8 toneladas
$$\rightarrow$$
 2800 kg
1 hectare \rightarrow 1hm² \rightarrow 0,01 km²

→ Quantidade produzida:

$$\begin{array}{ccc} 2800 \; \mathrm{kg} & \rightarrow & 0.01 \; \mathrm{km^2} \\ & X & \rightarrow & 16 \; \mathrm{km^2} \end{array}$$

$$X = \frac{2800 \times 16}{0.01} = 4.480.000 \text{ kg}$$

→ Caminhões necessários:

$$\begin{array}{cccc} 1 \; \text{caminh\~ao} & \rightarrow & 14000 \; \text{kg} \\ & Y & \rightarrow & 4480000 \; \text{kg} \end{array}$$

$$Y = \frac{4480000}{14000} = 320 \text{ Caminhões}$$

Resposta: B

Questão 5)

Informações:

- Nº de Questões: 20

- Duração da prova: 3 horas

3 Horas
$$\rightarrow$$
 180 minutos

Desta forma, teremos 170 minutos para resolver as 20 questões da prova. Uma média de:

Tempo Médio =
$$\frac{\text{Tempo Total}}{\text{N}^{\circ} \text{ de Questões}} = \frac{170}{20} = 8,5 \text{ minutos}$$

 $8,5 \text{ minutos} \rightarrow 8 \text{ minutos e } 30 \text{ segundos}$

Resposta: C

Questão 6)

A) ERRADO	
B) CORRETO	
C) ERRADO	
D) ERRADO	
E) ERRADO	

Resposta: B

Questão 7)

$$\frac{1+2+3+4+5+6+7+8+9}{9} + \frac{9}{1+2+3+4+5+6+7+8+9}$$

$$\frac{45}{9} + \frac{9}{45}$$

Simplificando as frações:

$$5 + \frac{1}{5} = \frac{25+1}{5} = \frac{26}{5} = 5.2$$

Resposta: A

Questão 8)

Informações:

- Preço do Salgado: R\$ 2,00

- Preço do Refresco: R\$ 1,50

→ Aumento do Salgado:

$$R$ 2,00 \xrightarrow{+10 \%} R$ 2,20$$

 $\label{eq:preconstraint} \textit{Preco Final} = \textit{Preco Inicial} + 10\% \ \textit{do Preco Inicial}$

Preço Final =
$$2 + \frac{10}{100} \times 2$$

Preço Final =
$$2 + 0.2 = R$2.20$$

→ Redução do Refresco:

$$R$$
\$ 1,50 $\xrightarrow{-18\%}$ R \$ 1,23

Preço Final = Preço Inicial - 18% do Preço Inicial

Preço Final =
$$1.5 - \frac{18}{100} \times 1.5$$

Preço Final =
$$1.5 - 0.27 = R$1.23$$

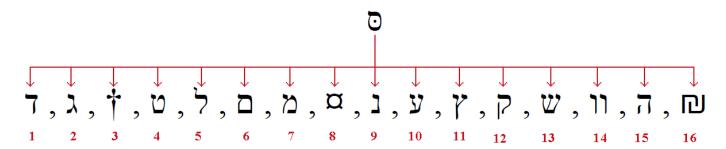
 \rightarrow Comparação dos gastos (Salgado + Refresco):

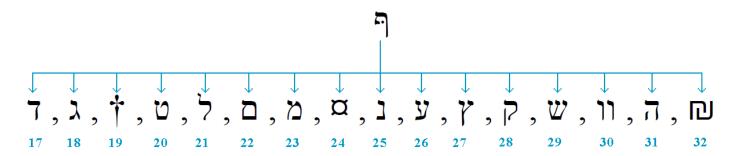
Preço Antes das Férias (Salgado + Refresco) =
$$2 + 1,50 = R$$
\$ 3,50

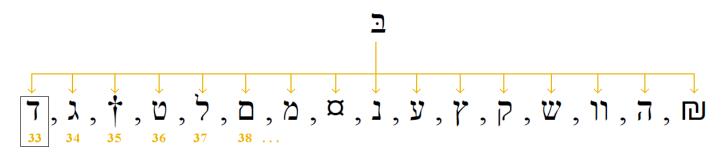
Preço Após as Férias (Salgado + Refresco) =
$$2,20 + 1,23 = R$$
\$ 3,43

→ Houve uma redução de X% após as férias:

Preço Após as Férias = Preço Antes das Férias - X% (Preço Antes das Férias)


$$3,43 = 3,50 - \frac{X}{100}(3,50)$$

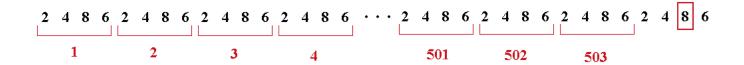

$$\frac{X}{100}(3,50) = 0.07$$


$$X = \frac{0.07 \times 100}{3.50} = 2$$

Resposta: C

Questão 9)

Resposta: B


Questão 10)

Potência de 2	Resultado	Algarismo das Unidades
21	2	2
2 ²	4	4
2 ³	8	8
24	16	6
2 ⁵	32	2
2 ⁶	64	4
27	128	8
28	256	6

A cada quatro potências, a sequencia {2,4,8,6} se repete nas unidades. Em 2²⁰¹⁵ temos:

2015	4
3	503

Ou seja, a sequência {2,4,8,6} será repetida 503 vezes e mais três elementos para completar as 2015 potências:

Outra forma de fazer é perceber que as potências de 2⁴ sempre terminam com o número 6:

$$(2^4)^2 = 16 x 16 = 256$$

 $(2^4)^3 = 16 x 16 x 16 = 4096$
 $(2^4)^4 = 16 x 16 x 16 = 65536$

Assim, 2²⁰¹⁵ pode ser escrito como:

$$2^{2015} = 2^{2012} \times 2^3$$

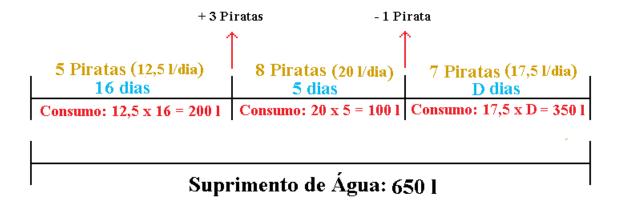
 $2^{2015} = (2^4)^{503} \times 2^3$
 2^{2015} (Unidades) = 6 x 8
 2^{2015} (Unidades) = 8

Questão 11)

→ Total de Suprimentos:

Consumo por Pirata:

1 Pirata
$$\rightarrow$$
 2,5 l de Água 5 Piratas \rightarrow X


$$X = 5 \times 2,5 = 12,5 l de Água por dia$$

Consumo em 52 dias:

1 Dia
$$\rightarrow$$
 12,5 l de Água 52 Dias \rightarrow Y

$$Y = 52 \times 12,5 = 650 l de Água$$

O suprimento que foi preparado para a viagem foi de 650 litros de água.

→ Consumo no último trecho da viagem:

$$17.5 D = 350$$

D = 20 Dias

Resposta: A

Questão 12)

→ Proposição do 1º aluno:

"Entre dois números impares o MMC pode ser par"

FALSA. O MMC é calculado como o produto dos fatores elevados ao maior expoente que obtemos na fatoração.

Exemplos:

$$A = 15 = 3 \times 5$$

$$B = 55 = 5 \times 11$$

MMC
$$(A, B) = 3 \times 5 \times 11 = 165$$

$$C = 15 = 3 \times 5$$

$$D = 45 = 3^2 \times 5$$

MMC (C, D) =
$$3^2 \times 5 = 45$$

No caso proposto, como ambos os números são ímpares o fator 2 não pertenceria a nenhum deles e o resultado do MMC não poderia ser par.

Como a proposição é FALSA o aluno seguinte deverá falar uma proposição **VERDADEIRA**.

A) FALSA

$$3 \times 1 = 3$$

$$3 x 2 = 6$$

$$3 x 4 = 12$$

$$3 x 5 = 15$$

Não são múltiplos de 9

B) FALSA

O MMC pode ser exatamente igual ao produto dos dois números.

$$MMC(2,5) = 10$$

C) FALSA

A soma dos algarismos de um múltiplo de onze é sempre par!

$$11 \times 4 = 44 \rightarrow Soma = 4 + 4 = 8$$

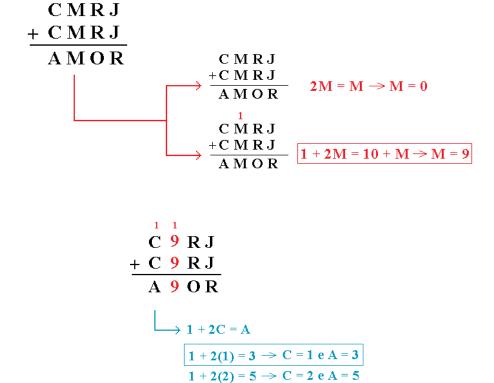
 $11 \times 11 = 121 \rightarrow Soma = 1 + 2 + 1 = 4$
 $11 \times 35 = 385 \rightarrow Soma = 3 + 8 + 5 = 16$
 $11 \times 124 = 1364 \rightarrow Soma = 1 + 3 + 6 + 4 = 14$

D) FALSA

$$32 = 2^5 \rightarrow (5+1) = 6 \text{ Divisores } \{1,2,4,8,16,32\}$$

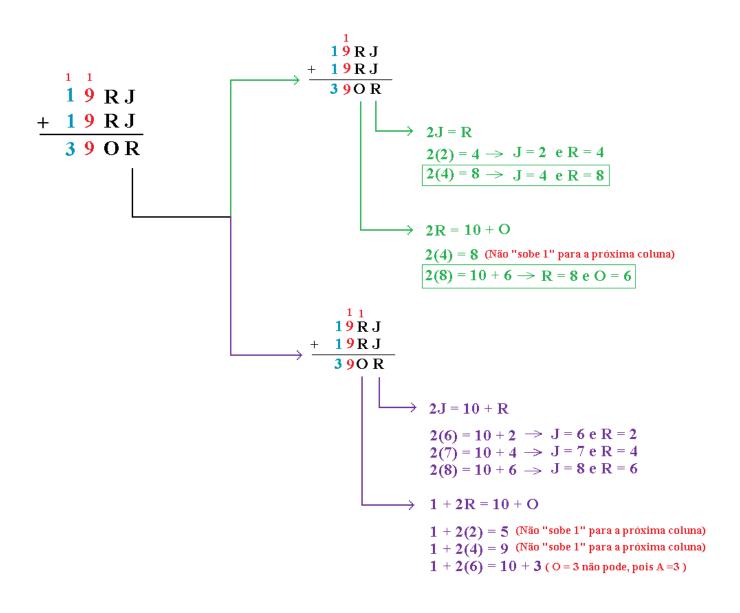
 $35 = 5x7 \rightarrow (1+1)(1+1) = 4 \text{ Divisores } \{1,5,7,35\}$

E) VERDADEIRA


Números primos possuem como fatores o número 1 e eles mesmos. Assim, o MMC entre dois números primos conterá como fatores o número 1 e eles mesmo:

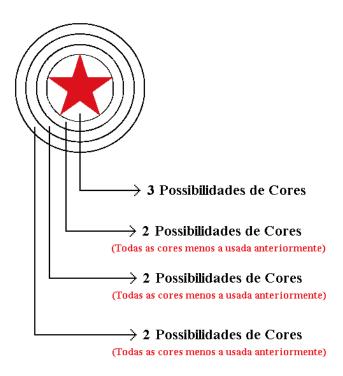
$$A = 37 = 1 \times 37$$

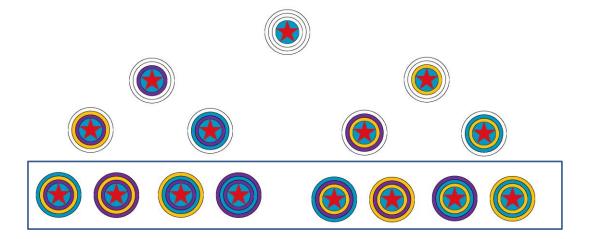
 $B = 151 = 1 \times 151$


MMC
$$(37,151) = 1 \times 37 \times 151 = 5587$$

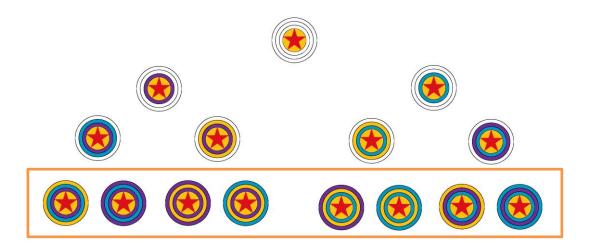
Resposta: E

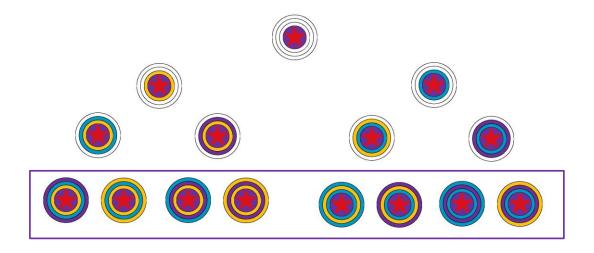
Questão 13)


- → Como CMRJ refere-se a uma data é coerente supor que o algarismo representado pela letra C seja 1 ou 2, formando datas da forma: 1992, 1985, 2001, 2012...
- \rightarrow Desta maneira, o algarismo M poderia ser 0 ou 9. Como o problema exige que os algarismos sejam $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, obtemos M = 9 e C = 1. Consequentemente A = 3.


$$\begin{array}{r}
 1984 \\
 + 1984 \\
 \hline
 3968
 \end{array}$$

$$A + M + O + R = 3 + 9 + 6 + 8 = 26$$


Resposta: E


Total: 3 x 2 x 2 x 2 = 24 Pinturas Diferentes

8 Escudos Diferentes

8 Escudos Diferentes

8 Escudos Diferentes

Total = 8 + 8 + 8 = 24 Escudos

Questão 15)

Informações:

- Nº de Alunos: 31

$$\frac{\text{Soma das Idades dos Alunos}}{\text{N}^{\underline{o}} \text{ de Alunos}} = 14$$

Soma das Idades dos Alunos = $31 \times 14 = 434$

→ Após a nova conta:

$$\frac{\text{Soma das Idades dos Alunos + Idade Prof. BV}}{\text{N}^{\circ} \text{ de Alunos + Prof. BV}} = 15.5$$

$$\frac{434 + Idade \, Prof. \, BV}{31 + 1} = 15,5$$

$$434 + Idade Prof. BV = 32 \times 15,5$$

$$434 + Idade Prof. BV = 496$$

Idade Prof. BV =
$$496 - 434 = 62$$

Resposta: D

Questão 16)

Informações:

Vitória: + 3 pontosEmpate: + 1 pontoDerrota: - 2 pontos

Equipes	Vitórias	Empates	Derrotas
Alfa	8	1	1
Beta	7	2	1
Gama	7	1	2
Delta	8	2	0
Pi	9	0	1

→ Tabela de pontuação:

Equipes	Pontos - Vitórias	Pontos - Empates	Pontos - Derrotas	Total
Alfa	$8 \times (+3) = 24$	$1 \times (+1) = 1$	$1 \times (-2) = -2$	24+1-2=23
Beta	$7 \times (+3) = 21$	$2 \times (+1) = 2$	$1 \times (-2) = -2$	21+2-2=21
Gama	$7 \times (+3) = 21$	$1 \times (+1) = 1$	$2 \times (-2) = -4$	21+1-4=18
Delta	$8 \times (+3) = 24$	$2 \times (+1) = 2$	$0 \times (-2) = 0$	24+2+0=26
Pi	$9 \times (+3) = 27$	$0 \times (+1) = 0$	$1 \times (-2) = -2$	27+0-2=25

Resposta: D

Questão 17)

I) Cada jarra B corresponde a 7/3 da Jarra A

1 Jarra B =
$$\frac{7}{3}$$
 Jarra A

II) 12 copos do tipo II correspondem a uma Jarra A

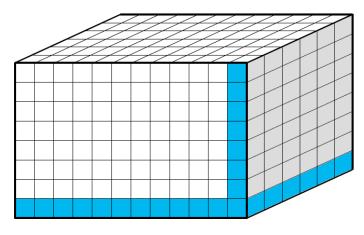
III) 15 copos do tipo I correspondem também a uma Jarra A

Utilizando as 10 Jarras B, teremos:

10 Jarras B =
$$\frac{70}{3}$$
 Jarra A

→ Jarras do tipo B em Copos do tipo I:

10 Jarras B =
$$\frac{70}{3}$$
 [15 Copos I]

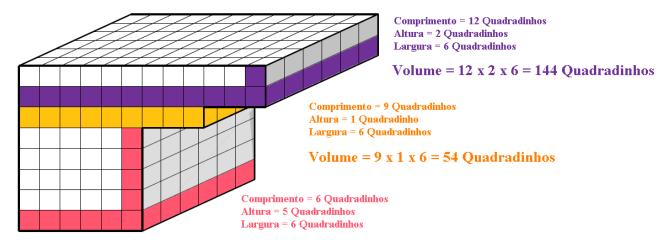

$$10 \text{ Jarras B} = 350 \text{ Copos I}$$

→ Jarras do tipo B em Copos do tipo II:

10 Jarras B =
$$\frac{70}{3}$$
 [12 Copos II]

Resposta: E

Questão 18)



Comprimento = 12 Quadradinhos

Altura = 8 Quadradinhos

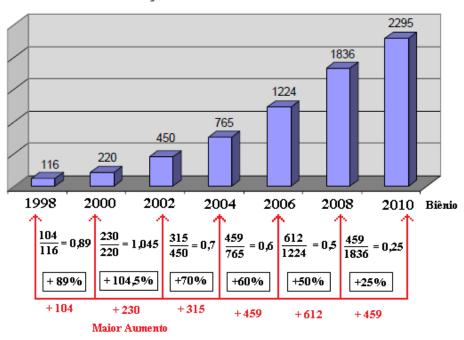
Largura = 6 Quadradinhos

Volume (1) = $12 \times 8 \times 6 = 576$ Quadradinhos

Volume = $6 \times 5 \times 6 = 180$ Quadradinhos

Volume (2) = 144 + 54 + 180 = 378 Quadradinhos

Volume (2) = Volume (1)
$$- X \%$$
 do Volume (1)

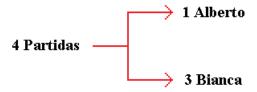

$$378 = 576 - \frac{X}{100} (576)$$

$$5.76X = 576 - 378$$

$$X = \frac{198}{5,76} = 34,375$$

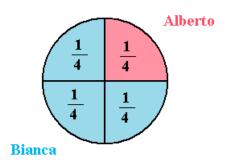
Resposta: E

Produção de Motocicletas no Brasil

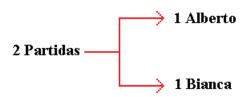


$$Aumento \% = \frac{Quantidade que Aumentou}{Produção Anterior}$$

Resposta: B


Questão 20)

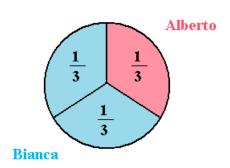
→ Antes do Almoço



% Vitórias (Alberto) =
$$\frac{1}{4}$$

% Vitórias (Bianca) =
$$\frac{3}{4}$$

→ Após o Almoço



→ Todos os Jogos

$$Total = 4 + 2 = 6 Partidas$$

% Total de Vitórias (Alberto) =
$$\frac{2}{6} = \frac{1}{3}$$

% Total de Vitórias (Bianca) =
$$\frac{4}{6} = \frac{2}{3}$$

